1シフト=12時間

2 전 1989 **** *****************************	S/ N	課題番号	実験課題名	実験責任者	実施時所属	国名	課題種	ピームライン	/フト=12時間 実施シフト
전		2021B8001	Vibrational coherences in Mn-based single-molecule magnets	Johan Johansson	University of Edinburgh	イギリス		BL3	5
	2	2021B8002	Triggering Star Formation : from the Cosmos to the Laboratory	Bruno Albertazzi	LULI, Ecole Polytechnique	フランス	SACLA一般課題	BL3	4
1	3	2021B8004		Hyotcherl lhee		韓国	SACLA一般課題	BL3	7
But But But Profession Professio	4	2021B8008		犬伏 雄一		日本	SACLA一般課題	BL2	9
★ Different	5	2021B8010 ²⁾	光合成アンテナ蛋白質フィコシアニンにおける光エネルギー移動の高速時間分割結晶構造解析	梅名 泰史	名古屋大学	日本	SACLA一般課題	BL3	5.5
2 전쟁에 변경 보고 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							SACLA一般課題		
2002 2003 771							SACLA一般課題		
Published					•		SACLA一般課題		
Page 12 P									
Part									
20100000									
2 日							(非専有)		·
2 日							(非専有)	-	
2010 1000 1000 1000 1000							(非専有)		
2 日	14	2021B8023	希ガスの過渡的な吸収率変化を利用した軟X線パルスの短パルス化	大和田 成起	高輝度光科学研究センター	日本	(非専有)	BL1	9
20 20 20 20 20 20 20 20	15	2021B8024	時分割シリアルフェムト秒結晶構造解析によるCO放出反応機構の解明	上野 隆史	東京工業大学	日本	(非専有)	BL2	4
20	16	2021B8029 1)	二液混合時分割SFX測定による銅合有アミン酸化酵素触媒機構の解明	村川 武志	大阪医科薬科大学	日本	(非専有)	BL2	4
20 20108023	17	2021B8030	創薬ターゲット蛋白質の迅速構造解析法の開発	岩田 想	理化学研究所	日本	(非専有)	BL2	2
20 日	18	2021B8031 ¹⁾	フェムト秒レーザー駆動衝撃波頭育後の超高速応力測定による高エネルギー密度状態凍結機構の解明	佐野 智一	大阪大学	日本		BL3	5
20 20190000	19	2021B8032	High throughput and time-resolved fixed target SFX of metalloproteins	Michael Hough	Diamond Light Source	イギリス		BL2	4.833
20	20	2021B8034	時間分解XAFSによる鉄錯体分子の金属・配位子電荷移行過程の研究	岩山 洋士	自然科学研究機構	日本		BL1	7
2 전 2년	21	2021B8035	Advanced KBミラーを用いた高安定sub-10nm XFEL集光システムの開発	山内 和人	大阪大学	日本		BL3	5
2 20180000	22	2021B8037	軟X線磁気誘起第二次高調波発生分光法の開発	堀尾 眞史	東京大学	日本		BL1	8
20	23	2021B8038	軟X線FELの波長スケール集光システムの開発	本山 央人	東京大学	日本		BL1	7
20	24	2021B8040 ¹⁾	100-nm集光XFELを利用した分子レベルイメージング	西野 吉則	北海道大学	日本		BL2	7
22 22で189049 Investigation of various energy transport channels in dente plasmas using x-ray surface scattering Lius Randoph University of Seages F-f** SCAL-mixted B.C. mixted Scale Scal	25	2021B8042		江川 悟	理化学研究所	日本		BL1	9
27 20:1880-15 20:18	26	2021B8043	Investigation of various energy transport channels in dense plasmas using x-ray surface scattering	Lisa Randolph	University of Siegen	ドイツ		BL2	9
22 22x1188046 W Childrane Academy of the Industrial in a photocomatical protein captured by XFEL Jangyun Wang Chilerace Academy of the Chilerace Academy of the Chilerace Academy of the Industrial Sciences 中間 Sciences SCIAL—Ratis IR.2 15 22 202188047 W Uning fermiosecond X-ray trobit to study existin dynamics and hole localization in CulnS2 quantum dots Wolphoch Gaweds Authornal University X-X-X SCIAL—Ratis IR.3 5 32 202188049 W Referencies of crystalography of Unified Hynth General Protections JRR Ball Academins Since JRR Ball Academins Since JRR Ball ACAL—Ratis IR.3 IR.3 3 32 202188050 W Time-resolved site-delective Coulomb explasion imaging of photocisesciation and improperation in minimage of photocisesciation in Culning Management (Academy Management Childrane) Academin Since JRS ACA Interioral Accoderator Transcription (Accoderator) JRS ACAL—Ratis IR.3 IR	27	2021B8045 ¹⁾	衝撃圧縮で非平衡に非晶質化した感星物質が液体または再結晶固体に分岐する過程の解析	奥地 拓生	京都大学	日本	SACLA一般課題	BL3	6
22 22 22188037 7 Usering feminosecond X-ray tools to study exciton dynamics and hole localization in CulnS2 quantum dots Wolcher Gaweits Authorous University X-X-CL - 投資器 BL3 5 30 202188048 8 被目的回換機能はあるトードX単レーザーのスペクトル社等化 連接 百分 全業産債大学 日本 SACLA - 投資器 BL3 5 31 202188052 2 Time-resolved crystallography of ultrafest light driven DNA repair by photolyseses 別所 職務 Academia Siste 方面 SACLA - 投資器 BL2 3 32 202188052 2 Time-resolved crystallography of ultrafest light driven DNA repair by photolyseses ARE TEXT TEXT TEXT TEXT TEXT TEXT TEXT TE	28	2021B8046 ^{1) 2)}	C-N bond activation and C-O bond formation in a photosensitizer protein captured by XFEL	Jiangyun Wang		中国	SACLA一般課題	BL2	5.5
30 2021B8046 報告和回回機能によるハードX線レーザーのスペクトル映車化 道度 百余 電気通信大学 日本 ACAL—総理額 (APR等) 8 5 31 2021B8051 Time-resolved cystalelyanghy of ultrafical light driven DNA repart by photolysess 別所義整 Academia Sinica 台湾 ACAL—総理額 (#事等) 3 32 2021B8062 Time-resolved sile-searchive Coulomb explosion imaging of photodissociation and rimp-opening in structural isomers of coordinophones QAC Maldroid Accelerator Laboratory BAC National Accelerator (#事等) BLC National Accelerator (#事等)	29	2021B8047 ¹⁾	Using femtosecond X-ray tools to study exciton dynamics and hole localization in CulnS2 quantum dots	Wojciech Gawelda		スペイン	SACLA一般課題	BL3	5
32 22188051 Time-resolved crystalography of ultrafast light driven DNA repair by photolysases	30	2021B8048	複合Bragg結晶によるハードX線レーザーのスペクトル狭窄化	道根 百合奈	電気通信大学	日本	SACLA一般課題	BL3	5
32 2021880552 Time-resolved site-selective Coulomb explosion imaging of photodissociation and ring-opening in structural isomers of violinhiphones SLAC National Accelerators アメリカ SACLA 一般課題 (非事者) BL1 7 33 2021880554 株長起日毎年における中持外表拠を持不支援の研究 人保田建也 現化学研究所 日本 SCLA 一般課題 (非事者) BL3 5 34 2021880555 Time-resolved xeray diffraction imaging of strong-field molecular initiation. Philip Buckshaum SLAC National Accelerators アメリカ SACLA 一般課題 (非事者) BL3 5 35 2021880558 業有機におけるグラファイトの選集総配格経験の研究 野原 落之 東北大学 日本 SACLA 一般課題 (非事者) BL3 5 36 2021880651 この温度酵素の一連進売の利用によるデリアルフェムト砂糖品構造解析 清緒 宋一 大阪大学 日本 SACLA 一般課題 (非事者) BL2 3 37 2021880662 X線自由電子レーザーモル・元用的なタンパク質動物構造解析法がありまたがり 市務・選里 東北大学 日本 SACLA 一般課題 (非事者) BL2 3 38 2021880662 またが外に上よる持続による持ちが正よる持力がよりがあるがありまたがりを関係しまたがよりを増生を関係しまたがりを関係しまたがよりを関係しまたがよりを関係しまたがあるがありまたがあるがあるがありまたがあるがありまたがあるがありまたがある	31	2021B8051	Time-resolved crystallography of ultrafast light driven DNA repair by photolyases	別所 義隆	Academia Sinica	台湾	SACLA一般課題	BL2	3
20188054 株本銀信海林における中赤外先動配格子養間の研究 久保田 雄也 理化学研究所 日本 SACLA―経酵題 氏事中) 日本 SACLA―経酵題 氏事中) 日本 SACLA―経酵題 氏事中) 日本 SACLA―経酵題 (非事中) 日本 SACLA―経酵題 日本 SACLA―経酵品 日本 SACLA―経財品 日本	32	2021B8052		Ruaridh Forbes		アメリカ	SACLA一般課題	BL1	7
A						日本	SACLA一般課題	BL3	5
18 日本 (非事有) (非事有) (非事有) (非事有) (日本)	34	2021B8056	Time-resolved x-ray diffraction imaging of strong-field molecular ionization.	Philip Bucksbaum	SLAC National Accelerator	アメリカ	SACLA一般課題	BL3	5
2021B8061	35	2021B8058		野尻 浩之	, , ,		SACLA一般課題		
7							SACLA一般課題		
Ref							SACLA一般課題		
2021B8064 電子・磁気の適屈所在双対性をもつブラセオジウム系コバルト酸化物における磁場誘起相転移のシングルショットX線が 池田 晩彦 電気通信大学 日本 SACLA一般課題 (非専有) BL3 5 2021B8066 反応中間体の構造解析に基づいた金属酵素による酸素分子活性化機構の解明 富舎 武彦 理化学研究所 日本 SACLA一般課題 (非専有) BL3 5 2021B8067 レーザー衝撃波反響圧縮による高硬度材料のオフユゴニオ状態の生成と観察 尾崎 典雅 大阪大学 日本 SACLA一般課題 (非専有) BL3 6 2021B8068 円偏光XFEL励起によるコェリ磁性体の存住のの超高速磁気ダイナミクス 鈴木 基寛 関西学院大学 日本 SACLA一般課題 (非専有) BL3 5 2021B8069 温度ジャンプ法による時分割シリアルフェムト砂結晶構造解析 藤原 孝彰 東北大学 日本 SACLA一般課題 (非専有) BL3 5 2021B8070 Ultrafast time-resolved x-ray transmission imaging for relativistic electron isochoric heating of a solid target 深田 寛 University of Nevada Reno アメリカ SACLA一般課題 (非専有) BL2 7 2021B8072 極業外内穀軌道間遷移を伴う超高速分子過程の穀剤 伏谷 瑞穂 名古屋大学 日本 SACLA一般課題 (非専有) BL1 7 2021B8075 Seeded Two-Color Stimulated XES and RIXS on Mn Solutions Uwe Bergmann University of Wisconsin-Madison アメリカ SACLAー般課題 (非専有) BL1 7							SACLA一般課題		
2021B8064 ウダー回折による解明 2021B8066 元応中間体の構造解析に基づいた金属酵素による酸素分子活性化機構の解明 當舎 武彦 理化学研究所 日本 SACLA-般課題 BL2 5 2021B8067 レーザー衝撃波反響圧縮による高硬度材料のオフユゴニオ状態の生成と観察 尾崎 典雅 大阪大学 日本 SACLA-般課題 BL3 6 2021B8068 円偏光XFEL励起によるフェリ磁性体GdFeCの超高速磁気ダイナミクス 鈴木 基竟 関西学院大学 日本 SACLA-般課題 BL3 5 2021B8069 温度ジャンプ法による時分割シリアルフェムト砂結晶構造解析 路13 5 2021B8069 温度ジャンプ法による時分割シリアルフェムト砂結晶構造解析 路12 3 2021B8070 Ultrafast time-resolved x-ray transmission imaging for relativistic electron isochoric heating of a Solid target 澤田 寛 University of Nevada Reno アメリカ SACLA-般課題 BL2 7 2021B8072 極素外内級軌道間遷移を伴う超高速分子過程の観測 伏谷 瑞穂 名古屋大学 日本 SACLA-般課題 BL1 7 2021B8075 Seeded Two-Color Stimulated XES and RIXS on Mn Solutions Uwe Bergmann University of Wisconsin-Madison アメリカ SACLA-般課題 FR 有) BL3 5							(非専有)		
2021B8067 レーザー衝撃波反響圧縮による高硬度材料のオフユゴニオ状態の生成と観察 尾崎 典雅 大阪大学 日本 SACLA-一般課題 (非専有) BL3 6 2021B8068 円偏光XFEL励起によるコエリ磁性体GdFeCの超高速磁気ダイナミクス 鈴木 基寛 関西学院大学 日本 SACLA-一般課題 (非専有) BL3 5 43 2021B8069 温度ジャンブ法による時分割シリアルフェムト秒結晶構造解析 原原 季彩 東北大学 日本 SACLA-一般課題 (非専有) BL2 3 44 2021B8070 Ultrafast time-resolved x-ray transmission imaging for relativistic electron isochoric heating of a solid target 澤田 寛 University of Nevada Reno アメリカ SACLA-一般課題 (非専有) BL2 7 45 2021B8072 極紫外内設軌道間通移を伴う超高速分子過程の観測 伏谷 瑞穂 名古屋大学 日本 SACLA-一般課題 (非専有) BL1 7 46 2021B8075 Seeded Two-Color Stimulated XES and RIXS on Mn Solutions Uwe Bergmann University of Wisconsin- Madison アメリカ SACLA-一般課題 (非専有) BL3 5			ウダー回折による解明				(非専有)		
2021B8068 円偏光XFEL励起によるフェリ磁性体GdFeCの超高速磁気ダイナミクス 鈴木 基寛 関西学院大学 日本 SACLA-船課題 BL3 5 1 1 1 1 1 1 1 1 1							(非専有)		
### APP							(非専有)		
# 2021B8070 Ultrafast time-resolved x-ray transmission imaging for relativistic electron isochoric heating of a solid target			円備光XFEL励起によるフェリ磁性体GdFeCoの超高速磁気ダイナミクス	鈴木 基寛	関西学院大学	日本	(非専有)	BL3	5
44 2021B8070 Olivarist time-resolved Xray transmission imaging for rearristic electron isocircle rearristic electron isocirc	43	2021B8069	温度ジャンプ法による時分割シリアルフェムト秒結晶構造解析	藤原 孝彰	東北大学	日本	(非専有)	BL2	3
46 2021B8075 Seeded Two-Color Stimulated XES and RIXS on Mn Solutions Uwe Bergmann University of Wisconsin-Madison アメリカ SACLA一般課題 (非専有) BL3 5	44	2021B8070	Ultrafast time-resolved x-ray transmission imaging for relativistic electron isochoric heating of a solid target	澤田寛	University of Nevada Reno	アメリカ	(非専有)	BL2	7
40 2021B00/3 Detected No-Color Stitutioned ALS and MAS Stit Mil Solutions Use Berginatin Madison / 7 5 7 / (非専有) BLS 5	45	2021B8072	極紫外内設軌道間遷移を伴う超高速分子過程の観測	伏谷 瑞穂		日本	(非専有)	BL1	7
¹⁾ SACLAにおける"SPring-8、J-PARC/MLFまたは「京」/「富缶」を含むHPCIと連携した利用を行う課題"				Uwe Bergmann		アメリカ		BL3	5